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Abstract. We construct a Hopf algebra cocycle for the Yangian doublg(sl,), conjugating
Drinfeld’s co-product to the usual one. To do this, we factorize the twist between two ‘opposite’
versions of Drinfeld’s co-product, introduced in an earlier work, using the decomposition of the
algebra in its negative and non-negative modes sub-algebras.

1. Introduction

The Yangian algebra is a Hopf algebra that was introduced by Drinfeld in [3]. Its quantum
double was introduced (without central extension) by Smirnov in [13] in connection with
integrable field theory. The doubly extended version of this algebra appeared in [10], and
its vertex representations were studied in [9].

The purpose of this paper is to show that Drinfeld’s co-product of the Yangian double
DY (sl) [4] is conjugated to the usual one. For this, we construct a Hopf algebra cocycle in
the Yangian doubl®Y (sl»). The construction of this cocycle was carried out by Khoroshkin
and Tolstoy [11], who used their theory of Cartan—Weyl bases. In their work, the cocycle
was expressed as some infinite product. Conversely, our construction relies on elementary
arguments, and we express the cocycle as the normal ordering of some exponential. We do
not know of a direct way of identifying both expressions.

We note thatDY (sl,) is endowed with two variants of Drinfeld’s co-product. These
co-products are associated with two decompositions of the Lie algebral, ® C((z71)),
the first one beingg = g, ® g_, with g = H ® Clz]) & (ny ® C(z ™)), g- =
(h®z71C[[z7 ) & (n_ ® C((z™1))), and the second one being its transform by the non-
trivial Weyl group element okl,. Hereh andn. are the standard Cartan and opposite
nilpotent sub-algebras aff;. In [7], we considered Hopf algebrd%;g quantizing more
general Lie bi-algebra structures associated with curves in higher genus, and showed that
they were conjugated by a twigt. The next step was the construction of a deformation
Urgr of the enveloping algebra of an algebra of regular functions with value$,jnn
our ‘rational’ situation, this Lie algebra correspondsstp® C[z] and Urgg to the Yangian
Y (slp). This sub-algebra also had the property that

A(Urgr) C Urg ® Usgr A(Urgr) C Usgr ® Usg.
The last step of [7] was to decompogeas a product; F;, with

F1 € Urg ® Upgr F; € Urgr ® Urg
§ Also at FIM, ETH-Zentrum, HG G45-1, CH-8092irich, Switzerland.
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and then to construct a quasi-Hopf algebra structur&gyy by twisting the co-produch

by Fi. F1 and F, are constructed by applying to one factor ©fa projection ofUzg on
Urgr, Which is a rightUzgg-module map. In this construction, the choice of the projection
is not unique. Changing the projection has the effect of chandingF») into (uFy, Fou™?t),

for someu € Uzg%Z; this changes the co-product &8) o A on Urgg by some twist.

The question naturally arises whether the same technique can be applied in Hopf algebra
situations. In this paper, we treat the case of the rational Manin iiptey”° ® g<°, where
070 = sl, ® C[z] and g=° = s, ® z7C[[z7Y]]. In this situation, bothg®® and g<° are
Lie sub-bi-algebras ofj, and there are also deformations of their enveloping algebras in
DY (sl), A®° = Y (slp) and A<0. Therefore, we require that the projectibh.o, be at the
same time a rightd<°-module map. Then it is uniquely determined. We show that the
first part, F1, of the decomposition of* constructed in this way satisfies the Hopf algebra
cocycle condition. This is the main result of our paper. The proof of this relies on the
following results.

We first prove that the second pak, of the decomposition of' is obtained by applying
to F a projectionllsg; similar toIl.q, ((28) and (29) later). We give two proofs (sections
3.3, 3.4) of this result, both of them relying on some study of the duality theory within
DY (slp) (section 3.2); the first proof directly applies results from [7]. This enables us to
show that the defect of the cocycle identity By belongs to two spaces with intersection
1® DY(sl;) ® 1. The fact that the pentagon identity is automatically satisfied by such
defects [5] then shows that it is indeed equal to 1.

After we twist by F; the universalR-matrix of DY (sl;) associated to Drinfeld’s co-
product, we obtain a new solution of the Yang—Baxter equation. Applying it to two-
dimensional representations &fY (sl,), we constructL-operators satisfying the Yangian
exchange (orRLL) relations of [8,12] (section 5). This connection between Yangian
RLL relations and quantum current relations had earlier been obtained in [11] (see [2] in
the trigonometric case). After this connection is clarified we are in a position to show
(section 6) thatF; conjugatesA to the Yangian co-product oPY (sly).

We will consider an elliptic version of the construction in a separate article [6]. There,
we will construct ‘twisted cocycles’ providing solutions to the dynamical Yang—Baxter
equation; this will lead us to the construction of quantum currents of elliptic quantum
groups.

The first step towards generalizing our results to the case of a general Lie algebra is to
generalize the twist'. This has been done by Reshetikhin (remark 2, later). In the general
case,F is then a product of factors corresponding to each simple root; one might expect
that these factors satisfy braid relations. We would therefore obtain a ‘quantum currents’
version of braid group representations. The next step of that generalization would be the
study of the duality theory within general Yangian doubles.

2. The Yangian doubleDY(sl,) and its co-products

The Yangian double is a Hopf algebra that was introduced in [10] (see also [13] in the
non-centrally extended case), and is associated to any semisimple Lie glgéhithe case
whereg = slp, this algebra is denoted bRY (sl;). We will also denote it byA. It is an
algebra over the ring of formal power series in the varidhlevith generators,,n € Z

(x =e, f,h), D and K, and the following relations

K @e)k* () = Z_Z_Lw”’e(w) €
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K@) fkt )t = ——2 f(w) )
z—w+h
_ 1 z—w+hK
k™ (@e(w)k™ ()™ = po— K +Ee(w) (3
C@ik o= W) @)
(z—w—h)ee(w) = (z—w+h)e(w)e(z) ®)
C—wH+R @) =G —w—h)fwfE) 6)
1 _
[e@). fw)] = 26, WK * () = 8. w = FKK~ (@)™ )

[K.anything]=0  [kK*(). k)] =0  [D.x(2)] = ‘;"‘—Zm f—e K (8)
Z—w—-nGEz—w+h—-hK)KT()K (w)

=Gz—-w+hGz—w—-h+hK)K (w)K"(2) 9
where forx = e, f, h, we set
PR =) Tt x@ =) wa T 2@ =070 +x7%0)

n=0 n<0
we also set
k+(Z) - exp(holn (Z+h> +Zh”ﬂ> (10)
z n>0 n
K™ (z) =exp (EZ hnz_n_l> (11)
n<0

andK*(z) = kT (kT (z—h), K~ (z) =k~ (2)k (z—h). In (10) and (11), the arguments of
the exponentials are viewed as formal power serigs with coefficients inA®z1C((z 1))
in the first case, and il ® C[z] in the second one. Finally(z, w) = ", , z"w "L,

Remark 1. The x, correspond, in the notation of [7], tdz"] for x = e, f, h andn € Z.

The Yangian double Hopf structuiy, is defined as follows (see [10]). Set

L>o()_<l Ff>0(z)><k+(z—l7) 0 )( 1 0)
9= 0 1 0 k+(Z)_1 Ee>O(Z) 1

L<%)__< 1 0><kQ——E 0 ><1 Ef<%m>
YT\ R0 1K) 1 0 o) \o 1

then L>%<C(z) are formal series in with values inA ® End(C?), and we set
Ay (K) =K®1+1®K Aye(D)=DQ®1+1®D
(Ar, ® DL7%(2) = L) P L70(0)® (12)
(Ayg ® DL(z) = L=z = hK) P L=O()™? (13)
with K; = K ® 1.
_ The algebraA can also be endowed with Drinfeld’s Hopf structures, ¢, S) and
(A, &, 8). They are given, on the one hand, by the co-produatefined by
A(kT(2)) = kF(2) ® k*(2) AK™(2) =K (1) ® K™ (z+hKy) (14)
Ale(z)) =e(2) @ KT(2) +1®e(2) (15)

and
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Af@) = fF@Q®1+K (2 '® f(z+hKy) (16)
AD)=D®1+1Q®D AK)=K®1+1®K 17)

the co-unite, and the antipods defined by them; and on the other hand, by the co-product
A defined by

AT (2)) = kT (2) ® kT (2) AK (@) =K (2)® K (z+hKy) (18)

Ae(z)) =e(z —hK) @ K (z —hK2) ' +1®e(2) (19)
Af@)=f@QR1+Kt(2)Q f(2) (20)
AD)=D®1+1®D AK)=K®1+1®K (21)

the co-unite, and the antipodé defined by them.
As we remarked in [7]A and A are linked by a twist operation. Let us set

F= eXp<EZ en ® f—n—l)

nez

then we have
A =Ad(F)oA. (22)

(Here and later, we use the notation (A3(x) = uxu~*, for x andu elements of some
algebra, withu invertible.)
F satisfies the cocycle condition (see [7])

(FODAQRDF) =1 F) AR A)(F).

Remark 2. N Reshetikhin informed us that he obtained the conjugation equation (22) in
the general case (that is, wittl, replaced by a semisimple Lie algebgh Then F is
equal to the producf],_, F;,, wherewg = s;,...s;, is a decomposition of the longest
Weyl group element as a product of simple reflections, &hd= g2nezn®fin-1 with
(ei:n)nezs (fin)nez the components of the fields corresponding toiesimple root. The
crossed vertex relations seem to imply that all eleméfitsommute together. However,
this is not quite true: the relations

(z — w +haij)(z — w — haij) [€(2) ® fi(2), ¢j(w) @ f;j(w)] =0
(whereq;; are the coefficients of the Cartan matrix) do not imply that the fielt9 ® f;(z)
ande;(w) ® fj(w) commute, but rather the existence of field§(z) such that
[¢i(2) ® fi(2), ;(w) ® fi(w)] = 8(z, w +hay)Af,(2) + 8(z, w — hayj) A7 ().

J
It would be interesting to check, using these fields, whether Ehg satisfy the braid
relations. In the same spirit, one is led to construct fields corresponding to non-simple roots
using the relation(z — w — fa;;)[ei (2), (K} ¢;)(w)] = 0.

3. Decomposition ofF

3.1. Sub-algebras ot

We will call A>° and A<° the sub-algebras oft generated byD and thex,,n > 0,
respectively byK and thex,,n < 0 (with x = e, f,h.) The multiplication induces
isomorphisms fromA=°® @ A< and A<° ® A=° to A; moreover, the intersection of>°
with A<C is reduced taC1.
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Let Upn, and Urn_ be the sub-algebras of generated by the,, n € Z, respectively
the f,,n € Z.

Let UpnZ° and Upn=° be the sub-algebras generated by then > 0, respectively by
thex,,n <0, withx =e fore =+ andx = f fore = —.

The linear map2/nz° ® Upn=° — Upn, andUin=° ® UpnZ® — Upn,, defined by the
composition of the inclusion with the multiplication, are linear isomorphisms; moreover,
the inclusions of algebrasgnfo C Upn. and Uﬁﬂ:o C Upn, are flat deformations of the
inclusions of commutative algebr&§x,,n > 0] c C[x,,n € Z] and C[x,,n < 0] C
Clx,,n € Z] (see [7]).

Remark 3. Relations for generating currents®(z) = Y_,.ox,z" ! and x=%(z) =
> 0%z "t of UsnZ® and Uyn=0 are
(z—w —Me"(@)e"(w) — (z — w + R (w)e' () = —h(e"(2)? + ¢ (w)?)
and
@—w+R) @) (W) — (2 —w=h) f1(w) f(2) = (") + f"(w)?)
n € {>0, <0}.
On the other hand, the relations between these currents are
@ —w—h)e"(2)e" (w) — z — w+h)e" (w)e"(z) — hle"(2)” + " (w)’] =0
E—w+R) 1@ f" W) — (2 —w=h) f7 (W) f"(2) + A f" @)%+ [T (w)’] =0
if {n,n"} = {=0, <0}.

3.2. Hopf algebra pairings

Let Uzh, be the sub-algebra o generated byD and theh,,n > 0, andUrh_ be the
sub-algebra ofA generated by and theh,,n < O.

Let Urg+ be the sub-algebras of generated byzh. and Upn., and Upg. the sub-
algebras ofA generated by/zh- and Upn...

(Urg+, A) are Hopf sub-algebras ofA, A); (Urg., A) and(Urg_, A") are dual to each
other, and the duality, ) is expressed by the rules

(ena fm> = %6n+m+l,0 <has hb) = %anerrl,O (D, K> =

n,m¢€Z,a > 0,b < 0, the other pairings between generators being trivial.

In a similar way,(Usg~, A) are Hopf sub-algebras @4, A); (Usg, A") and (Usg—,
A) are dual to each other, and the duality’ is expressed by the rules

Sl =

Sl

’ 1 ’ 2 ’
(ena fm) = ﬁ‘sn-&-m-#—l,o (hu’ hb) = ],_—Z(Sa+b+1,0 (K, D) =

n,me€Z,a >0,b < 0, the other pairings between generators being trivial.
The restrictions of,, ) and (, )’ to Usny x Uzrn_ coincide and are denoted Qy) ;.. -
Moreover, we have the following lemma.

Lemma 3.1. (See [7].) (1) The annihilator atn”° for (, YUins 1S X ,0€n - Upny.

(2) The annihilator ofUzn:° for (, )yn. iS Y, o fu - Umn-_.

(3) The annihilator oUsn;% is 3", Upn_ - f,.

(4) The annihilator ofUzn=° for (, )y, IS Y, _o Uity - €n.
Proof. (1) and (3) are consequences of [7, propositions 6.2], and (2) and (4) are shown in
a similar way. O



2406 B Enriquez and G Felder

Finally, the link betweerF and the pairing, )y;+, can be described as follows. Let us
first introduce the notation

(a,id®b)y,w = Z%’(a,{v byy,w (a,b®id)yw = Z(ai, b)v wa;

for a € V®2 andb € W, for V, W some vector spaces ard)y  some pairing between
them,a being decomposed 85, a; ® a;.
Lemma 3.2. (See [7, (66) and (68)].) (1) For anye Upn,, we have
(F, id® x)Uyui = X.
(2) For anyy € Upn_, we have

(Fa y ® id)Unni =Y.
3.3. Decomposition of’

Proposition 3.1. There exists a decompositidh = F,F1, with F; € Uini°® U2 and
e Ugni()@Ugnfo. It is unique up to changes of, F») into (AF1, A™1F,), with A € C*.

Proof. Let us denote by1-q,, 1>, and byIl_g;, .o, the linear maps fron¥/zn, to
Upnz® and Uyn=° defined by
IT, 1 (ayay) = aye(ay) IT, (aya,) = e(ay)a,

for {n, '} = {>0, <0} anda, € Usn!.

Lemma 3.3. (1) (T-o, ® 1)(F) belongs toUsn° ® Usn°.
(2) (1® Mx,)(F) belongs toUzn° ® Upn°.

Proof. (1) (IT.o, ® 1)(F) clearly belongs thﬁnjO ® Upzn_. On the other hand, we have
for anya € Un, andn > 0

((H<0,r ® 1)(F)a id ® ena> = I—[<O,r(ena) =0.

The first equality follows from lemma 3.2(1), and the second from the factlthat, is
a left Uﬁnio-module map. From lemma 3.1(1) it now follows th@i.o, ® 1)(F) also
belongs toUsn, ® Usn=°.

(2) is proved in the same way, using lemma 3.2(2), and lemma 3.1(2). O

Lemma 3.4. (IT.p, ® 1)(F) is equal to(1 ® o, )(F).
Proof. Leta. belong toUsn”° and leta_ belong toU,;njO. Let us compute
((Meo, @D(F) — AR M0, (F), ay @ a-)yqe. (23)

Due to lemma 3.2, this is equal {@1¢,(a-), at)umm, — (a—, M>0,(a+))vmm,. Since
M.o,(a-) =a_, Mxp,(a+) = a4, (23) is equal to zero.

The pairing(, )y;«. is a flat deformation of the symmetric power of the pairing between
Clz] and z71C[[z Y]], defined by(f, g) = res.(fgdz). Therefore, it defines an injection
of UpnZ® in the dual ofUnz° and of Umn3® in the dual ofUsn=°. That (23) is equal to
zero then implies thatll.o, ® 1)(F) = (1 ® 0, ) (F). O
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AsTlp, isa rightUﬁniO—module map, we can apply [7, (74), second statement], with
Urgr = AZ°, and obtain

(1@ Mxo,)(F)F ' € U7’ ® Upn_. (24)

We can now apply the arguments of [7, proposition 7.2] to the Hopf algebra’). The
role of Urgy is now played byA<C; F is replaced byF?Y. The analogue of the second
statement of [7, (74)] is then

(1® Moo )(FE))(FE) ™ € Uin=" @ Upn,. (25)
We can show in a similar way that

(Mz0; @ D(F) = (1@ M) (F)
so that this quantity belongs @n>° ® U= _, and that

F7H(IT20; ® D(F) € Upn3® © Upn=", (26)
Consider now the product
(Mxo; ® D(F) 'F (Mo, @ D(F) L (27)

Since(M-o, ®1)(F) € Um°®@Un>°, and by (26), this product belongs tan;°® Usn=°.

On the other hand, sinc@lsq; ® 1)(F) € Uynio ® Umn=0, and by (24), it belongs to
Uynjo ® Uﬁnfo. It follows that this product is scalar. Since the constant term in its
expansion is equal to one, (27) is equal to one.

Therefore, we can set

Fi1 =, @D(F) =(1AQIxo,)(F) (28)

and
F =z @ D(F) = (1® o) (F). (29)
O

3.4. Another proof of proposition 3.1
Let us defineF; and F» by
F1 = (Iloo, ® D)(F) Fo = (T>0; @ D(F) (30)

and show directly thaF = F,F;. For this, we will consider the linear endomorphignof
Urn, defined by

£(x) = (F2F1,id ® x)yzm, - (31)
Let us denote byr the linear map fronUzg.. to Upn,., defined byr (rx) = e(t)x, for
x € Upng, t € Uph,. Let us also denote by’ the linear map fronUzg, to Usn,, defined
by #'(x't") = x’e(t’), for x’ € Upn,, ¢’ € Urh_.
Lemma 3.5. (1) Fory € Urg,, we have
(F,id®y) = m(y). (32)
(2) Forz € Upg., we have
(F,id®z) = 7'(2). (33)
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Proof. Let us prove (1). Let us first show that for agpye Urn_, we have

0Ly =0 (). (34)

To prove this, consider the case where= 7yo, yo € Upny, to € Ughy. Then(y',y) =

(A'(Y), to ® yo)(2); but A’(y") belongs toUsn_ ® Urg_, and fora € Urhy, b € Upn_,

{a,b) = e(a)e(b). It follows that(y’, y) = ((¢ ® 1) o A'(¥)e(to), yo) = (¥, m(y)), so that
(34) holds. (32) then follows from (34) and lemma 3.2.

(2) is proved in a similar way. O

We then computel(x) as follows, forx € Upny. SetA(x) = Y, x/ ® x/, with
.xi/ € Uﬁn+, xl-” € Uﬁg+ Then
E(x) = Z(Fz, Id ®X;)<F]_, |d ® )Ci”) == Z H}O,l(xl'/)n<0,r((Fv Id ® )C[H))

1

=) Moo () (Mg, 0 m)(x]). (35)
We deduce from this expression the following property of

Lemma 3.6. ¢ is a left UsnZ°-module map.

Proof. Tl.g, o is defined as follows. Recall that the product operation defines a linear
isomorphism from the tensor produtkh, ® Uynio ® Ugnjo onto Urgy. g, om is

then defined byTl g, o m)(x) = e(tx=0)x-0, for x decomposed asx-ox-o, ¢ € Urh,,

X>0 € Uznio, X0 € Uynjo. On the other hand, denote ky;b, the subspace ob;g.
corresponding td/zh; ® U;nio ® 1. We can check that this is a sub-algebralgf... It
follows thatIl_p, o 7 satisfies

(Mo, 0 ) (bx) = e(b)(T<o,r 0 7)(x) (36)

for b € Upb,, x € Urg,.

Finally, (15) implies that for any: € Z, A(e,) = 1® e, + ) ,-pen—p ® K7 (We set
Kt (z) = Z,@o K;’z_”), so that forn > 0 this belongs taUzn, ® Upb,; it follows that
AUMZ%) C Upny ® Upby,.

Let us fixb in Upnz® andx in Upny. SetA(x) = Y, x| @ x/, x| € Upny, x!' € Urgs,
andA(b) = Z; b} ® b;/, b; € Upng, b;/ € Ugb,. Then

€bx) =Y " Toou(bjx)) (Moo, o )(B}x]) = Y Moo, (bjx))e(B)) (Mo, 0 7)(x])
i,j i,j

= Y Toou(bx)(Meo, 0m)(x)) = b Y Toos(x) (Mo 0 7)(x])

= bl(x).
The second equality follows from (36), the third from the properties of the co-unit, and the
fourth from the fact thafl., is a left Ugnio-module map. d

Set nowA(x) = Y, ¥/ ® X/, with x| € Upn,, ¥/ € Upg+. Then

0x) =) (Fpid @ %) (Fi,id® %) =) Mo, ((F,id ® &) ) o, (¥)

1

= Y (Mxos 0 )& oo,(F), (37)

We now deduce from this expression the following.
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Lemma 3.7. ¢ is a rightUzn3%-module map.

Proof. As above, the product operation defines an isomorphism of vector spaces
from Upn7® ® Umi® ® Ush_ to Uzg.. The image by this map of ® Umi® ® Ush-
is a sub-algebra ofUzg,, that we denote byUpb,.. Tl.o; o ' is then defined by
(M=o 0 ) (x) = Y, x=006(be), if x is decomposed a§", x-o.4be, X-00 € Upni’,
b, € Upb,. Therefore, we have
(Mo 0 ') (xb) = (I, 0 ') (x)e(b) (38)

for x € Upgs, b € Uzb,. i

Finally, (19) implies that fom > 0, A(e_,) = Y ,o0enip ® (K™, +1® e,
(we set(K ) M(z) = Y_,o((K )™,z 77), and so belongs to/n, ® Usb.; it follows that

A(Usny) C Uy @ Uzb,. .
Fix x in Ugny, b in Um0 with A(x) = 3, ¥/®x/, x| € Upny, x/' € Udy, b; € Upn3?,
b € Usby, A(b) = Y, b; ® b} Then

€(xb) =Y (Mxqy o ) (¥/b)) Moo, (¥/B)) = Y (M0 0 7N (& )e (b)) 10, (X))
i,j i,j

= Y (Meoy o) &) eo, (¥/b) = Y (Mg 0 1) () o, (F)b

iJ

= {(x)b.
The second equality follows from (36), the third one from the properties ahd the fourth
one from the fact thafl_o , is a right Uynjo—module map. O

Let us now prove proposition 3.1. We hav€l) = 1. Since any element dfyn, can
be expressed as a sum of produltsx; %, with x7° € Um??, x° € Usmn3°, and by
lemmas 3.6 and 3.7, coincides with the identity. O

4. Cocycle properties

Theorem 4.1. F; satisfies the cocycle equation
(Fi®D(AQ®D(F1) = (1® F)(1® A)(F).
Proof. First note that
AA”%) c A® AZ° AA) CcA® A
AAT%) Cc A A AA) cA® A
Let us set
@ = AP (A DF)(F (18 A)(F)) !
we have clearlyd € A<°® A ® A=0. Since we also have
@ = (A D(F)F?) (18 A)(F)

we also see thab € A”°® A ® A<C.
Therefore,® = 1® a ® 1, for a certairu € A. On the other hand, &b is obtained by
twisting a quasi-Hopf structure, it should satisfy the compatibility condition (see [5])

(A1 ®id®id)(P)(id ® id ® A)(P) = (P Q@ D(Id® A Qid)(P)(1Q D)
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whereA; = Ad(F1) o A. This implies that
l1®a®a®1l=(18a®13D1I®A1@)RD(1®1I®Ra®]

and soA;(a) = 1; applying the co-unit to one of the factors of the tensor product where

this equality takes place, we obtain= 1. O

Remark 4. Another way to show tha® is scalar is the following. We can use the third
expression ofb in [7, proposition 7.4] to show thab belongs toA ® A*°® A. By writing

a similar expression fo, we get thatd € A ® A<° ® A. Together with the fact thab
belongs to 1® A ® 1, this shows tha® is scalar.

Remark 5. First-order computations lead us to believe tligt and F»> can be expressed
polynomially in terms of the rege<C(z) ® f2°(z))" dz, and regs(e*°(z) ®f<(2))" dz,
respectively. Product formulae fdf, » can be found in [11].

5. Yangian RLL relations

It follows from theorem 4.1 that we can twist the Hopf algebra structdreA) by Fi, and
get another Hopf algebra structure. The twisted co-produgtjis= Ad(Fy) o A.
Let

R = qD®Kq%Zi20h"®h*f*1queZ ei®f i1 (39)

this is the universaR-matrix for (A, A) (see [7]). The universakR-matrix for the twisted
Hopf algebra(A, Aj) is thenR; = FI(ZDRFl‘l. We then have the Yang—Baxter equation

Rg-lZ)Rg-lB)Rg-ZB) — Rg-ZS)Rng)Rng). (40)

Recall now the formulae for two-dimensional representationd ¢éee [1]). Lets be
a formal variablek, the field of formal Laurent power seri€3((¢)), 9, the derivation of
k. defined as fd¢, andk,[9,] the associated ring of differential operators.

Lemma 5.1. There is a morphism of algebras from A to EndC?) ® k. [d,][[%]], defined
by

ﬂ{(K):O NC(D):ldC2®8;

2
(e)o  c
me(hyy = [ T4 n>0
0 - (1+2q_azz”) (9]
g
(1 - z”) ©) 0
e (hy) = N n<0
0 - (q;la: 1z”) ©

reen=(2 ¢ = (2 ° nel.
‘ 0 0 ‘ 0
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Lemma 5.2. We have

A@7)(R) =L7°0¢)  A@m)(REY) = ¢"* L.
Proof. Let us denote by]ﬁ'ﬂii the linear spans i;n. of products of more thanfactors
e, respectivelyf;. Then the varioud1E, preserve the/zn7'. The formulae (28) forFy
then imply thatF; belongs to 1+ EZQ’O e_il1® fi + Upn7? ® Usn”?. The lemma now

follows from the decomposition (39), and from the fact that th@>? are contained in the
kernel ofr,. O

Lemma 5.3. The image ofRy by n, @ . is
(1, @ 1) (R1) = AL, ¢ )R°(¢ — ¢')
where

R<%(2) = (zldcegc2 — I P)

1
z—h
where P is the permutation operator of the two factors(@f)®2, andA(¢, ¢') is the formal

series
1q3_1 i\ r—i—
e X (55rr1c )< )

i=0

Proof. Since the images by, andn, of Uﬁniz are equal to zero, and using again the fact
that F; belongs to -7 ), ge i 1 ® f; + Uyniz ® Usn=?, we find that this image is the
same as that of
(1+EZ £i® e,-1>q%2f>ohf®h~ (1 ~BY ei1® f)
i=0 i=0

Let us denote by;; the endomorphism of? such thatE;jv, = 84;vi, Where(vy, v_1) is
the standard basis @2. We find that

, h
(m; @ mp)(Ry) = AL, ¢ )<1+ mEfl,l ® E1,1> <E1,1 ®FEi1+E 1 1®E 11

{'=¢ =t —h )
— —FE11®E 1 1+ ———E 1_1®E11
{'—=¢+h =t
h
X (1 T é,,El,fl ® E1,1>-
The lemma follows. O

Define RZ%(z) as the inverse oR<%(z). We have

R?O(Z) —

i+ E(Z |dc2®(cz -+ EP)

Let us now apply to (40) ® 7, @ n,, 7, @ 1 ® 1 andw, ® mp ® 1. We find the
following relations between matricds®™ (¢).

Proposition 5.1. We have

R'(¢ = ¢HL"D(@L"P () = L"@ (Y L"P()R" (¢ - ¢) (41)
LV@OR™(¢ —¢HLZ*P (&)
A, +hK)

AL, 8
n € {=0, <0}. (42)

= LR — ¢ = RK)L=V()
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Remark 6. After analytic continuation in the variables ¢/, we see thatA(¢, ¢’) only
depends ot — ¢’. If we setA(¢,¢’) = A(¢ — ¢'), we then have
Z

A(QA(z+h) = s

so thatA is equal to
T ((z/2h) + 3)?

AQ = T2 1 r 2

6. F1 and the Yangian co-product

Since A(A*%) c A ® A*° and F; and F;* belong toA ® 40, A1(A*%) c A ® A>°. On
the other handA; = Ad(F, ) o A; since A(A%) c A>°® A, and F, and F, * belong to
A9 ® A, A1(A”% C A*°® A. This shows that=C is a Hopf sub-algebra af4, A;).

We can show in the same way that® is a Hopf sub-algebra ofA, Ay).

Therefore, it is natural to expect that; coincides with the Yangian co-produdy,.
In this section, we show that this is indeed the case.

Since(A, Ay, R;) is a quasi-triangular Hopf algebra, we have

(A1® D(Ry) = RPREY (1® AD(Ry) = R{PR{?. (43)

Apply now id® id ® 7, to the first equation of (43) ang, ® id ® id to the second one.
We find

(A @ DL = L)L) (A1 @ DL ™ = L0 L=0()@®
where£=<°(¢) = ¢*% L<(¢); the last equation implies, sine&(K) = K ® 1+ 1Q® K, that
(A1 ® DL = L= —RK)PIL=0(5)*.

Since we also havell ® 1+ 1 ® D, F;] = 0 (the algebrasA. being adD)-invariant),
and K ® 1+ 1® K, F1] = 0, and comparing the above formulae with (12) and (13), we
conclude.

Proposition 6.1. A; = Ad(F1) o A coincides withAy,.
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